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Abstract

In order to investigate the form of the van der Waals interaction in different multilayer
geometries we reformulate the Lifshitz theory in terms of an algebra of 2× 2 matrices. This
device allows us to derive a closed form solution for the secular determinant of the modes in
terms of simple quadratures with explicit N dependence. We specifically investigate: (i) the
van der Waals interactions between a substrate and a multilayer system as a function of the
separation between the substrate and the multilayer system and (ii) the interaction between
two multilayer systems over a medium of variable separation.

1 Introduction

Recent experiments on bilayers adsorbed to rigid substrates have shown the complexity of inter-
actions between a multilamellar lipid block close to a substrate [1]. Even neglecting the poorly
understood effects of substrate roughness [2] there still remains much to learn regarding the
interactions between a multilamellar lipid system and a rigid substrate [3]. Similar problems are
raised also in other systems with multilayered geometry such as finite free standing smectic films
[4] and smectic block copolymer layers [5]. Among the different forces acting in these multilayer
systems van der Waals interactions are the most ubiquitous deserving to be studied in detail. We
will formulate the theory of van der Waals forces in different multilayer geometries and derive
closed form solutions that explicitly depend on the number of layers in the multilayer system.

Though some problems of this type have been addressed before [7, 8], the explicit depen-
dence of the interaction on the number of layers, N , has remained hidden in implicit, recursion
formulae. Here we go beyond this formulation that allows us to solve the recursion relation
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analytically and use this solution to write down the van der Waals interaction free energies in a
form with explicit N dependence.

The plan of the paper is as follows. Following and expanding upon [7] we will first solve the
electromagnetic wave equation in the case of a multilayer geometry with dielectrically homoge-
neous layers. The solution of the wave equation in this geometry will be obtained in terms of
the 2× 2 transfer matrix which will be decomposed into a product of two separate matrices, the
diagonal propagator matrix and the symmetric discontinuity matrix, valid for the non-retarded
as well as retarded cases of van der Waals interaction. The propagator matrix describes the
propagation of the modes in the homogeneous regions of the multilayer geometry, while the
discontinuity matrix describes the effects of the dielectric discontinuities on the electromagnetic
modes. This straightforward decomposition, not noted before, allows us to create a simple
mnemonic for constructing the tranfer matrix in a wide variety of multilayer geometry contexts
and to recast the Lifshitz theory into a simple and transparent form. We will then show how the
(11) element of the transfer matrix is related to the secular determinant of the electromagnetic
modes and that will allow us to write down the van der Waals free energy in terms of this
element of the transfer matrix. This transparent formalism will allow us to treat the cases of (i)
the van der Waals interactions between a substrate and a multilayer system as a function of the
separation between the substrate and the multilayer system, and (ii) the interaction between
two multilayer systems over a medium of variable separation.

The reformulation of the Lifshitz theory derived here simplifies and schematizes the calcu-
lation of the van der Waals interaction in multilayer systems into a transparent form particu-
larly suitable for numerical computations. Because all results are derivable in terms of simple
quadratures and contain explicit dependence on the number of layers in the multilayer system,
the fundamental decomposition of the transfer matrix into a product of the propagator and
the discontinuity matrices adds much-needed transparency and a convenient bookkeeping to the
computation of van der Waals interactions in complicated multilayer geometries

2 Model

Begin by focusing on a particular multilayer geometry in the z direction: a semi-infinite substrate
(L) with a frequency dependent dielectric function εL(ω) separated by a layer of medium εm(ω)
with thickness lm from an array composed of N layers (B′, B) with dielectric functions εB′(ω)
and εB(ω) and thicknesses b′ and b respectively (see Fig. 1). At the right hand boundary we
have a semiinfinite dielectric medium (R) with εR(ω). We will then generalize this geometry,
case (i), to the case (ii) where on the l.h.s. we also have a semiinfinite layer (L), covered with
a multilayer stack composed of M (A,A′) layers, interacting across the medium m, again of
thickness lm, with a multilayer stack of N (B′, B) layers on the r.h.s. ending in a semiinifnite
substrate (R). If the materials A and B, as well as A’ and B’ are the same, the l.h.s. multilayer
is a mirror image of the r.h.s. multilayer.

In the Lifshitz theory of Van der Waals interactions the electromagnetic field fluctuation free
energy F is obtained as [6]

F = kT
∑
Q

∞∑
n=0

′

lnD(iξn, Q), (1)

where the summation over the two-dimensional wavevector Q takes care of the homogeneity of
the system in the (x, y) plane. The n summation is over the characteristic boson frequencies
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Figure 1: A schematic presentation of the model. The multilayer slab composed of N + 1 layers
B′ and N layers of B at a distance lm away from the semiinfinite region (L) on the l.h.s., ending
in a semiinfinite region (R) on the r.h.s. The matrices Dij and Tij are defined in the m ain text.

of the electromagnetic field given by ξn = 2πnkT
~ , in standard notation. The prime in the

summation indicates the fact that the n = 0 term is given a weight 1
2 . The secular mode equation

D(ω, Q) = 0 gives the eigenfrequencies of the EM field modes in the specified geometry.
In order to evaluate van der Waals interactions first one has to solve the wave equation

with all the discontinuities implied by the system geometry. In this way one obtains a system
of equations for the constant coefficients of the solution whose determinant gives the mode
equation. From this secular determinant the van der Waals free energy emerges from Eq. 1.

3 Solution of the wave equation

3.1 The wave equation

We first derive the secular determinant for the EM modes between a half space L and a multilay-
ered half-space R (see Figure 1). We use Maxwell equations in standard form (with c2 = 1

ε0µ0
)

∇2E(r) +
εµω2

c2
E(r) = 0, ∇ ·E(r) = 0. (2)
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for the electric field and

∇2H(r) +
εµω2

c2
H(r) = 0, ∇ ·H(r) = 0, (3)

for the magnetic field. For succinctness we drop the explicit dependence on ω in E(r, ω) and
H(r, ω), but it is always understood. Similarly for the displacement fields

D(r) = εε0E(r) B(r) = µµ0H(r), (4)

valid in each homogeneous domain of the multilayer system.
We treat the electric field in detail then write the magnetic field results by analogy. Because

the system is homogeneous in the (x, y) plane, the solution of the wave equation for the electric
field, Eq. 2, has the form

E(r) = e(z)eıQ·ρ H(r) = h(z)eıQ·ρ, (5)

where ρ = (x, y) is the two dimensional radius vector and Q = (Qx, Qy). In each dielectric
medium i the function ei(z) must satisfy the Helmholtz equation

d2ei(z)
dz2

+
(

ω2εiµi

c2
−Q2

)
ei(z) = 0, (6)

whose solution has the form
ei(z) = Aie

ρiz + Bie
−ρiz, (7)

with

ρ2
i = Q2 − εiµiω

2

c2
. (8)

Because both electric as well as magnetic fields are divergence free, the spatial components of
Ai,Bi satisfy

Ai,z = − ı

ρi
(QxAi,x + QyAi,y)

Bi,z =
ı

ρi
(QxBi,x + QyBi,y) . (9)

In each homogeneous domain of the multilayer system, we write εi, µi, Di and Bi without
explicit ω dependence. At the interfaces between these homogeneous domains the transverse
components of E, i.e. Ex and Ey, are continuous, while in the longitudinal direction it is the
dielectric displacement D that is continuous

Ei−1,x = Ei,x Ei−1,y = Ei,y and Di−1,z = Di,z (10)

The same holds also for the B and H. This constraint between coefficients reduces to enforcing
the transitive relation between successive Ai, Bi, from i = L to i = R across the entire layered
structure of Figure 1. For two neighboring layers i− 1 , i Eqs. 10 and 9 yield

Ai =
εi−1ρi + εiρi−1

2εiρi

(
e(ρi−1−ρi)li−1/iAi−1 + ∆i−1,ie

−(ρi−1−ρi)li−1/iBi−1

)
Bi =

εi−1ρi + εiρi−1

2εiρi

(
∆i−1,ie

(ρi−1−ρi)li−1/iAi−1 + e−(ρi−1−ρi)li−1/iBi−1

)
, (11)
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with
∆i−1,i =

εi−1ρi − εiρi−1

εi−1ρi + εiρi−1
. (12)

Here Ai and Bi stand for Ai,z and Bi,z and li is the position of the discontinuity between the
ith and the i− 1st layers. The same analysis holds for the magnetic field starting from equation
Eq. 3. The only difference compared to electric field is the substitution

∆i−1,i =
εi−1ρi − εiρi−1

εi−1ρi + εiρi−1
−→ ∆i−1,i =

µi−1ρi − µiρi−1

µi−1ρi + µiρi−1
, (13)

In this spirit we derive results only for the electric component of the EM modes and let the
results for the magnetic component follow.

3.2 A mnemonic to construct the transfer matrix

Because of the transitive relation between successive Ai, Bi we can cast this result in a much
more appealing form by introducing a vector aT

i = (Ai, Bi), in order to write Eq. 11 as

ai = M · ai−1, (14)

where the newly introduced transfer matrix M, apart from some multiplicative constant factors
that are irrelevant for the subsequent analysis and have been absorbed into a redefinition of ai,
M, can be written in the form

M =
(

1 ∆i−1,ie
−2ρi−1di−1

∆i−1,i e−2ρi−1di−1

)
, (15)

with di−1 = li−1,i − li−2,i−1.
We now observe that this transfer matrix can be factored into a product of two matrices

describing the propagation of EM modes, viz.

M =
(

1 ∆i,i−1

∆i,i−1 1

)
×
(

1 0
0 e−2ρi−1di−1

)
. (16)

With each discontinuity between media i and i − 1, we can thus associate a symmetric matrix
Di,i−1, of the form

Di,i−1 =
(

1 −∆i,i−1

−∆i,i−1 1

)
, (17)

and a diagonal matrix Ti of the form

Ti−1 =
(

1 0
0 e−2ρidi−1

)
, (18)

so that the transitive relation for the vector of the coefficients ai between two successive media
can be written as

M = Di,i−1 × Ti−1. (19)

We can now easily generalize this relation to three consecutive media: i− 1, i− 1 and i. In this
case the coefficients ai are connected with the coefficients in the third layer ai−2 via a relation

ai = M · ai−2 (20)
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where one can now derive that the transfer matrix M is of the form

M =
(

1 −∆i,i−1

−∆i,i−1 1

)
×
(

1 0
0 e−2ρi−1di−1

)
×
(

1 −∆i−2,i−1

−∆i−2,i−1 1

)
= Di,i−1 × Ti−1 × Di−2,i−1, (21)

thus M is the product of matrices that enforce boundary conditions across interfaces and prop-
agate fields traversing layers of finite thickness. These matrices are applied for regions starting
on the l.h.s. and ending on the r.h.s.

The meaning of the diagonal matrix Ti−1 and the symmetric matrices Di−1,i and Di−2,i−1 is
as follows: Ti−1, the propagator matrix, describes the propagation of the EM modes across the
dielectrically homogeneous material of εi−1 from the discontinuity εi−2, εi−1 to the discontinuity
εi−1, εi. Di−1,i and Di−2,i−1, the discontinuity matrices, represent the jump in the material
properties as the EM modes pass respectively from material i−1 to material i and from material
i− 2 to material i− 1.

This notation can now be used for any number of layers, starting at the leftmost layer L and
ending at the rightmost layer R with N layers in between

M = DR,N−1 × TN−1 × DN−1,N−2 × TN−2 × DN−2,N−3 . . . T1 × D1,L. (22)

Still the relation between the coefficients in the first and the last media keeps the form

aR = M · aL. (23)

We have thus found a simple mnemonic for constructing the transfer matrix for EM modes in
an inhomogeneous system composed of a variable number of layers each with different dielectric
properties. The mnemonic can be described as follows: with each discontinuity between media i
and i− 1 associate a symmetric matrix Di−1,i, with each homogeneous slab of material between
the discontinuities i− 1, i and i− 2, i− 1, associate a diagonal matrix Ti−1. The transfer matrix
M is then given by Eq. 22.

The above analysis renders the many layers problem efficiently solvable. By constructing
the appropriate form of the transfer matrix, composed of the matrix products of the propagator
matrix and the discontinuity matrix, we can now show how the transfer matrix is connected
with the secular equation for the EM eigenmodes.

4 The secular determinant

Because media (L) and (R) are both semiinfinite, the fields from surface modes must decay far
from the outermost dielectric boundaries; hence AR = 0 and BL = 0, or aT

R = (0, BR) and
aT

L = (AL, 0). This can only happen if

aR = MaL −→ m11 ≡ DE(iξN , Q) = 0. (24)

The unnormalized secular determinant is thus given exactly by the (11) element of the transfer
matrix M. The only excitations of the electric field that satisfy the boundary conditions are
those obtained from solving the secular equation m11 ≡ DE(iξN , Q) = 0. For the magnetic part
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analogously m11 ≡ DH(iξN , Q) = 0. The complete electromagnetic spectrum of the problem
can thus be deduced from the following EM mode secular equation

D(iξN , Q) = DE(iξN , Q)DH(iξN , Q) = 0. (25)

The free energy of the fluctuating EM modes is cast into a form containing the secular determi-
nant of the electric and magnetic modes

F = kT
∑
Q

∞∑
n=0

′

lnD(iξN , Q) = kT
∑
Q

∞∑
n=0

′

lnDE(iξN , Q) + kT
∑
Q

∞∑
n=0

′

lnDH(iξN , Q). (26)

If one is interested in the interaction free energy as a function of a variable spacing lm, see Fig.
1, one has to consider the difference between the fluctuation free energy from Eq. 26 and its
”zero”, obtained at lm −→ ∞. This form of analysis completely reproduces the well known
results on the van der Waals interactions across a single or double slab [6].

5 A periodic array of slabs between two semiinfinite media

With this general theory where the transfer matrix is given as a product of propagator and
discontinuity matrices we are now in a position to treat first the case (i) depicted on Fig. 1.
The multilayer slab is composed of one layer of material m of thickness lm and N periodic units
of length b+ b′, composed of material B and B′. All parameters are assumed to be independent
of lm.

5.1 Formulation through the transfer matrix

In this geometry the transfer matrix can be immediately written as

M = DRB′ × TB′ × DB′B × TB × DBB′︸ ︷︷ ︸
A

× · · · × TB′ × DB′B × TB × DBB′︸ ︷︷ ︸
A︸ ︷︷ ︸

N

×TB′ × DB′m × Tm × DmL,(27)

or
M = DRB′ × AN × TB′ × DB′m × Tm × DmL, (28)

where

A = TB′ × DB′B × TB × DBB′ =

(
1−∆2

BB′e−2ρBb ∆BB′
(
1− e−2ρBb

)
−∆BB′e−2ρB′b′

(
1− e−2ρBb

)
e−2ρB′b′

(
e−2ρBb −∆2

BB′

) ) .

(29)
Defining the elements of the power of the matrix A

AN =

(
a

(N)
11 a

(N)
12

a
(N)
21 a

(N)
22

)
(30)

and introducing them into Eq. 28 yields the 11 element of matrix M, i.e. the secular determinant

m11 =
(
a

(N)
11 − a

(N)
21 ∆B′R

)(
1 + ∆B′m∆(N)

B′Re−2ρB′b′
)(

1−∆Lm
∆B′m + ∆(N)

B′Re−2ρB′b′

1 + ∆B′m∆(N)
B′Re−2ρB′b′

e−2ρmlm

)
,

(31)
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with

∆(N)
B′R =

a
(N)
12 − a

(N)
22 ∆B′R

a
(N)
11 − a

(N)
21 ∆B′R

. (32)

As written m11 includes physically irrelevant lm independent factors that will add a constant
term to Eq. 26, independent of lm, and thus not contributing to the interaction free energy. The
lm dependent part of the secular determinant can be on the other hand written as

m11(lm) −→
(
1−∆Lm∆eff

mR(N)e−2ρmlm
)

, (33)

where obviously

∆eff
mR(N) =

∆B′m + ∆(N)
B′Re−2ρB′b′

1 + ∆B′m∆(N)
B′Re−2ρB′b′

(34)

In the case of N = 0 layers this result straightforwardly reduces to the case of interactions in
the Lmb′R slab.

5.2 Connection with a recursion formula

We will now show that the above formulation is not only equivalent to an earlier recursion
relation formulation [7] but also gives an explicit analytical solution of the recursion relation.

What differs between the cases of N − 1 and N layers between L and R? Consider first the
following recursion relation

∆(N)
B′R =

p12 + p11∆
(N−1)
B′R

p22 + p21∆
(N−1)
B′R

, (35)

with pik the elements of a matrix P. Let the boundary condition be ∆(0)
B′R = ∆B′R. This

recursion relation can be solved exactly using the form

∆(N)
B′R =

g(N) + f (N)∆B′R

h(N) + e(N)∆B′R

. (36)

Inserting this ansatz into Eq. 35 and defining

C(N) =
(

f (N) g(N)

e(N) h(N)

)
, (37)

we find
C(N) = PC(N−1), (38)

or, taking into account the boundary condition for N = 0

C(N) = PN . (39)

The recursion relation Eq. 35 becomes

∆(N)
B′R =

p
(N)
12 + p

(N)
11 ∆B′R

p
(N)
22 + p

(N)
21 ∆B′R

, (40)
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the p
(N)
ik now stand for the elements of the matrix PN . From this we see that Eq. 32 is equivalent

to a recursion relation of the form

∆(N)
B′R =

a12 − a22∆
(N−1)
B′R

a11 − a21∆
(N−1)
B′R

. (41)

If the elements of matrix A, aik, are taken from Eq. 29, the above recursion relation can be
written in the following form

∆(N)
B′R =

∆B′B + ∆(N)
BRe−2ρBb

1 + ∆B′B∆(N)
BRe−2ρBb

∆(N)
BR =

∆BB′ + ∆(N−1)
B′R e−2ρB′b′

1 + ∆BB′∆(N−1)
B′R e−2ρB′b′

, (42)

with the boundary condition ∆(1)
B′R = ∆B′R. This recursion relation coincides with the result

derived by Parsegian and Ninham [8]. The transfer matrix strategy thus allowed us to solve this
recursion relation explicitly.

5.3 Application of the Abelès formula

With the secular determinant for the multilayer problem derived in terms of the elements of the
matrix AN , Eq. 32, we now invoke an identity valid for square matrices

AN =
(det A)N/2

sinh ξ

 sinhNξ a11√
detA

− sinh (N − 1)ξ sinhNξ a12√
detA

sinhNξ a12√
detA

sinhNξ a11√
detA

− sinh (N − 1)ξ

 , (43)

where
cosh ξ = 1

2
TrA√
detA

. (44)

Following Abelès [9] this formula can be reproduced via induction starting from the rather trivial
case of N = 2. If we define

U
(−)
ik ≡ aik − e−ξ

√
det A and U

(+)
ik ≡ aik − eξ

√
det A, (45)

then we obtain for ∆(N)
B′R of Eq. 32

∆(N)
B′R =

U
(−)
22 − e−2NξU

(+)
22

−a12

U
(+)
22

+∆B′R

−a12

U
(−)
22

+∆B′R

−a21

1− e−2Nξ

−U
(+)
11

a21
+∆B′R

−U
(−)
11

a21
+∆B′R

 =

(
a?

22 − e−ξ
)(

1− e−2Nξ −a?
21+∆B′R(a?

22−eξ)
−a?

21+∆B′R(a?
22−e−ξ)

)
−a?

21

(
1− e−2Nξ (a?

11−eξ)−a?
12∆B′R

(a?
11−e−ξ)−a?

12∆B′R

) . (46)

Here we have substituted a?
ik = aik/detA to normalize A. Then eξ and e−ξ are nothing but

eigenvalues of this matrix with the property (see below)(
a?

11 − e−ξ
)(

a?
22 − e−ξ

)
= a?

12a
?
21, (47)
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which is just a different way of writing down Eq. 44. Clearly in the limit of a very large number
of layers, N −→ ∞, the limiting value of ∆(N)

B′R should not depend on the presence of the b′R
discontinuity, i.e. on the value of ∆B′R. This expectation is verified directly from Eq. 46 in the
specified limit

∆(N−→∞)
B′R =

U
(−)
22

−a21
=

(
a?

22 − e−ξ
)

−a?
21

. (48)

This limit can be reached also via the recursion relation Eq. 42 which shows that for large N there
is no difference in the solution of the recursion relation between the (N−1)st and Nth iteration.
In other words the recursion relation has a fixed point defined by ∆(N−1)

B′R = ∆(N)
B′R which leads

immediately to Eq. 48. This can be seen as follows: inserting the ansatz ∆(N−1)
B′R = ∆(N)

B′R back
into Eq. 42 we obtain the following equation satisfied at the fixed point ∆(N−→∞)

B′R

∆(N−→∞)
B′R =

a12 − a22∆
(N−→∞)
B′R

a11 − a21∆
(N−→∞)
B′R

, (49)

or equivalently, if we divide the numerator and the denominator on the r.h.s. by detA(
∆(N−→∞)

B′R

)2
a?

21 + (a?
22 − a?

11) ∆(N−→∞)
B′R − a?

12 = 0. (50)

Solving this quadratic equation and taking into account that by definition det a?
ik = 1, we

immediately obtain back Eq. 48 exactly.

6 Generalizations and specializations

We can now write results for the following cases pertinent to the multilayer geometry: (i) interac-
tions between a substrate and a multilayered slab and (ii) interactions between two multilayered
slabs.

6.1 Interactions between a substrate and a multilayered slab

For this geometry we derive the secular determinant by putting together the secular determinant
Eq. 33 and the form of the ∆(N)

B′R derived in Eq. 46. Disregarding now all the physically irrelevant
terms that do not depend on lm we derive the secular equation for the EM modes in this case
in the form

m11 −→
(
1−∆Lm∆eff

mR(N)e−2ρmlm
)

. (51)

This result can also be written in the form expicitely containing the properties of the individual
layers making up the system. We first introduce the associated unitary matrix

A? =
A√
detA

=
(

a?
11 a?

12

a?
21 a?

22

)
(52)

derived from Eq. 29. A? has two eigenvalues λ± such that λ+λ− = 1. These can be represented
by

λ+ = eξ and λ− = e−ξ. (53)
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so that the eigenfunction equation becomes

cosh ξ = 1
2TrA?. (54)

Written in extenso

λ± = 1
2

TrA√
detA

(
1±

√
1− 4 detA

(TrA)2

)
. (55)

From Eq. 29

TrA = 1−∆2
B′B

(
e−2ρB′b′ + e−2ρBb

)
+ e−2(ρB′b′+ρBb)

detA =
(
1−∆2

B′B

)2
e−2(ρB′b′+ρBb), (56)

so that ∆(N)
B′R, Eq. 46, can be written

∆(N)
B′R =

(a?
22 − λ−)

(
1− λ2N

−
−a?

21+∆B′R(a?
22−λ+)

−a?
21+∆B′R(a?

22−λ−)

)
−a?

21

(
1− λ2N

−
(a?

11−λ+)−a?
12∆B′R

(a?
11−λ−)−a?

12∆B′R

) . (57)

Because λ− < 1 in the limit of N −→∞ we derive

∆eff
mR(N −→∞) =

∆B′m∆B′Be−2ρB′b′
(
1− e−2ρBb

)
+
(
e−4ρB′b′

(
e−2ρBb −∆2

B′B

)
− λ−

(
1−∆2

B′B

)
e−(ρBb+3ρB′b′)

)
∆B′Be−2ρB′b′ (1− e−2ρBb) + ∆B′m

(
e−4ρB′b′

(
e−2ρBb −∆2

B′B

)
− λ−

(
1−∆2

B′B

)
e−(ρBb+3ρB′b′)

) ,

(58)
where we have used the explicit form of the Tr and det from Eq. 56. The van der Waals
interaction free energy in this case can thus be written as

F = kT
∑
Q

∞∑
N=0

′

ln
(
1−∆Lm∆eff

mR(N −→∞)e−2ρmlm
)
. (59)

We have omitted the magnetic terms of an analogous form. This form of the interaction free
energy becomes more simple in the asymptotic limit of large lm. In this case we derive after
some heavy algebra that

F = −kT
∑
Q

∞∑
n=0

′

∆Lm∆mB′e−2ρmlm −

− kT
∑
Q

∞∑
N=0

′

∆Lm

1−∆2
B′Be2ρBb − λ−

(
1−∆2

B′B

)
e(ρBb+ρB′b′)

∆BB′ (1− e−2ρBb)
e−2(ρmL+ρB′b′+ρBb).(60)

To the lowest order in lm we are simply back to the interactions between two semiinfinite slabs
L and B′ over m, the first term in the above equation, plus a first order correction because of
the finite thickness of the region B′.
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6.2 Interactions between two multilayered slabs

By symmetry we can generalize the above results also to the case of two multilayered slabs
interacting over the region m of thickness lm, where on the l.h.s. we have a semiinfinite layer
(L), covered with a multilayer stack composed of M (A,A′) layers, interacting across the m with
a multilayer stack of N (B′, B) layers on the r.h.s. ending in a semiinifnite substrate (R). Using
our mnemonic for constructing the transfer matrix or applying symmetry arguments directly to
Eq. 59 we arrive at

m11 −→
(
1 + ∆eff

Lm(M)∆eff
mR(N)e−2ρmlm

)
, (61)

where ∆eff
Lm(M),∆eff

mR(N) are

∆eff
mR(N) =

∆B′m + ∆(N)
B′Re−2ρB′b′

1 + ∆B′m∆(N)
B′Re−2ρB′b′

(62)

and

∆eff
Lm(M) =

∆A′m + ∆(N)
A′Le−2ρa′a

′

1 + ∆A′m∆(M)
A′Le−2ρa′a

′
. (63)

∆(N)
B′R is given by Eq. 57. ∆(N)

A′L, on the other hand, is given by the same formula but with
reversed direction of the discontinuities, which amounts to the transformation ∆B′m,∆B′R −→
−∆A′m,−∆A′R.

In the limit of a large number of layers N,M −→ ∞ with furthermore N = M , the same
limiting expressions apply as in the previous case except that they can now be obtained for the
left multilayered slab as well as for the right side. We thus get

m11 −→
(
1 +

(
∆eff

Lm(M →∞)∆eff
mR(N →∞)

)
e−2ρmlm

)
. (64)

The interaction free energy is thus obtained in the form

F = kT
∑
Q

∞∑
n=0

′

ln
(
1 +

(
∆eff

Lm(M →∞)∆eff
mR(N →∞)

)
e−2ρmlm

)
, (65)

plus an equivalent magnetic term. In the asymptotic limit of large lm and for the case that the
multilayers to the left and to the right of m are symmetric we obtain in complete analogy with
the analysis in the previous sections that

F = −kT
∑
Q

∞∑
n=0

′

∆2
mB′e−2ρmlm −

− kT
∑
Q

∞∑
n=0

′
1−∆2

B′Be2ρBb − λ−

(
1−∆2

B′B

)
e(ρBb+ρB′b′)

∆BB′ (1− e−2ρBb)

2

e−2(ρmlm+ρB′b′+ρBb),(66)

plus again an analogous magnetic term. To the lowest order in lm we are simply back to the
interactions between two semiinfinite slabs B′ over m, the first term in the above equation, plus
a first order correction because of the finite thickness of the region B′.
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7 Conclusions

We have reformulated the theory of van der Waals forces to treat interactions within finite and
infinite multilayered arrays by a straightforward and simple formalism that connects the secular
mode equation with the properties of the transfer marix for the EM field.

The key is to decompose the 2× 2 transfer matrix into a product of propagator and discon-
tinuity matrices in such a way that the gaussian boundary conditions at successive interfaces
of the different layers are properly enforced. The decomposition of the transfer matrix into a
product of propagator and discontinuity matrices allowed us to create a simple but powerful
mnemonic for constructing the secular determinant and consequently the free energy of van der
Waals interactions in general multilayer geometries. This mnemonic works for the retarded as
well as non-retarded cases and reduces the formula for the van der Waals free energy to simple
quadratures involving explicitly the number of layers. We applied this novel formulation of the
Lifshitz - van der Waals interaction to two different cases involving multilayer geometries, but
it can be used in many other multilayer geometries.

If the multilayer geometry contains a repeating motif, e.g. in our case the repeating (BB′)
layers, the transfer matrix is then reduced to an explicit form by invoking the Abelès formula
for the power of a 2× 2 matrix. This device allowed us to derive the secular determinant of the
EM modes in multilayer geometries in a form explicitly involving the number of these repeating
layers. Our procedure is formaly equivalent to an exact solution of the implicit recursion relation
obtained in the previous work [8].

In the case of van der Waals interactions between a multilayer slab and a substrate we were
able to show that the slab can be represented by an effective value of the dielectric response
of the slab as a whole, as described by ∆eff

mR. In the limit of a large number of layers in the
slab we derived an explicit form for this quantity dependent on the dielectric response of the
B′ and the B layers and their respective thicknesses. Similar arguments can be used for the
interaction between two semiinfinite mirror symmetric slabs of (BB′) composites interacting
across m. In this case as well the interaction formula reduces to the form of interaction between
two semiinfinite homogeneous layers where their effective dielectric properties depend again on
the dielectric response of the (B′) and the (B) layers and their respective thicknesses.

The formal reduction of the van der Waals interaction problem onto an algebra of 2 × 2
matrices, presented in this work, allows us to succinctly and effectively formulate the evaluation
of the van der Waals interactions in complicated multilayer geometries that are much more
difficult to treat in the framework of the standard approach.
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